Central subsets of Urysohn universal spaces

نویسنده

  • Piotr Niemiec
چکیده

A subset A of a metric space (X, d) is central iff for every Katětov map f : X → R upper bounded by the diameter of X and any finite subset B of X there is x ∈ X such that f(a) = d(x, a) for each a ∈ A ∪ B. Central subsets of the Urysohn universal space U (see introduction) are studied. It is proved that a metric space X is isometrically embeddable into U as a central set iff X has the collinearity property. The Katětov maps of the real line are characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension and reconstruction theorems for the Urysohn universal metric space

We prove some extension theorems involving uniformly continuous maps of the universal Urysohn space. As an application, we prove reconstruction theorems for certain groups of autohomeomorphisms of this space and of its open subsets.

متن کامل

The Urysohn, completely Hausdorff and completely regular axioms in $L$-fuzzy topological spaces

In this paper, the Urysohn, completely Hausdorff and completely regular axioms in $L$-topological spaces are generalized to $L$-fuzzy topological spaces. Each $L$-fuzzy topological space can be regarded to be Urysohn, completely Hausdorff and completely regular tosome degree. Some properties of them are investigated. The relations among them and $T_2$ in $L$-fuzzy topological spaces are discussed.

متن کامل

Random and Universal Metric Spaces

We introduce a model of the set of all Polish (=separable complete metric) spaces: the cone R of distance matrices, and consider geometric and probabilistic problems connected with this object. The notion of the universal distance matrix is defined and we proved that the set of such matrices is everywhere dense Gδ set in weak topology in the cone R. Universality of distance matrix is the necess...

متن کامل

The Urysohn universal metric space and hyperconvexity

In this paper we prove that Urysohn univeral space is hyperconvex. We also examine the Gromov hyperbolicity and hyperconvexity of metric spaces. Using fourpoint property, we give a proof of the fact that hyperconvex hull of a δ-Gromov hyperbolic space is also δ-Gromov hyperbolic.

متن کامل

THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF AXIOM IN L-TOPOLOGICAL SPACES

In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so as to be compatible with pointwise metrics. Some properties and characterizations are also derived

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010